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1. Least Squares (LS) Estimation

Prototype optimal/adaptive filter revisited

filter structure ¢ filter input

— FIR filters

(=pragmatic choice)
<:| filter parameters
cost function ?

. : filter output
— quadratic cost function - P

(=pragmatic choice) e : ©

desired signal
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1. Least Squares (LS) Estimation

e[k,

FIR filters (=tapped-delay line filter/‘transversal’ filter)

d[k], e

filterinpt ~ U[K]

y[k]r dk

L ulk-1] u[k-2] u[k-3]

T T
}’k=zwl'”k-l=w Ll =
10

ulk], yx

e [k] filter output
where

T
w =[wo W,

desired signal d[k] w
w, ] )

atbw v—«L a

Filter coefficients (‘weights’) are w, (replacing b, of
For adaptive filters w, also have a time index w,[K]

PS: Shorthand notation u,
previous chapters)

uk=[ u, U, ... uk_L]
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1. Least Squares (LS) Estimation

Quadratic cost function

MMSE :

< B[} Bl

Least-squares(LS) criterion

if statistical info is not available, may use an alternative ‘data-based’ criterion...

k 2
- Sa-uiv)
=1

Interpretation? : see below
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1. Least Squares (LS) Estimation

filter input sequence : uy,ug,ug,... wy

corresponding desired response sequence is : dy, do, ds, . . .

AR ==

error s1gna1 e U
cost function J,s(W) = Eezz = ||e||§ =|la- UW”z
=1

— linear least squares problem : miny ||d — Uw||%
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1. Least Squares (LS) Estimation

k
Jsw) = Del =[ef; =" e =[a-w];

I=1
minimum obtained by setting gradient = 0 :

dJps(w)

0=[—g  Tw=wis = [%(de +wl UTUw — ow! U7 d)wew,

T T
uU du

=1
Xow - wrs=Xg, — wrg=X,Xg, This is the
‘Normal equations’ ‘Least Squares Solution’

(L+1 equations in L+1 unknowns)
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1. Least Squares (LS) Estimation

Note : correspondences with Wiener filter theory ?
& estimate Xy, and X, by time-averaging (ergodicity!)

estimate{}?uu} = %i u,. u,T =
I=1

estimate {R,, } = %.iul, d, =
I=1

leads to same optimal filter :

. 1 -1 1 _
estimate{wyy p} = (quu) L. (;Xdu) = Xm} Xgy =WLs
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1. Least Squares (LS) Estimation

Note : correspondences with Wiener filter theory 7 (continued)

& Furthermore (for ergodic processes!) :

so that

lim, W, =W,
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2. Recursive Least Squares (RLS)

For a fixed data segment 1.. k least squares problem is
2

2

Matrices and vectors now
with time index added

Wlk]=x,, 0" x, 0= [UkTUk ]_1 .Udek

Wanted : recursive/adaptive algorithms

Can LS solution @ time k be computed from solution @ time k-1 ?
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2.1 Standard RLS

It is observed that xuu[k] = Nuu[k —-1]+u, .11:

The matriz inversion lemma states that (che atrix inversion lemma’ in Wikipedia)

-1 -1 1 a -1
N ot ex peeto——— b kK with k=X (k-1
2 [ O e ‘

With this it is proved that:

'Kalman gain vector' 1, priori residual’
1

woslkl=w, [k—11+ R [k]”

e (d, —alw,[k—1]D

1

[ S
raT,, e Ty

= standard recursive least squares (RLS) algorithm

Remark : O( L2) instead of 0(L3) operations per time update

Remark : square-root algorithms with better numerical properties
see below
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2.2 Exponentially Weighted RLS

Exponentially weighted RLS: Goal is to give a smaller weight to ‘older’ data, i.e.

k
Tiwy = S e
=1

0 < A < 1is weighting factor or forget factor

ﬁ is a ‘measure of the memory of the algorithm’

Which leads to...
A d, A al
iL"’zd2 _ A"’zug

0T
Aluay

U, W b

o i =
Wk=xuu[k] R, k] = UkUk 'dek
|
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2.2 Exponentially Weighted RLS

s ; _ 42 _ T _ 32
It is observed that xuu[k]—/l N [k-1]+u,u, (and Ndu[k] A

» N, [k=1l+u.d,)

hence
; ! kK] with LS

1+Fuixuu[k—l] u,

Il
FELLEl I

-1
7 R k=117 =(

Wikl =W,k =11+R [k (d, —ufw, [k =1])

i.e. exponential weighting hardly changes RLS formulas.. (easy!)

DSP 2016 / Chapter-7: Recursive Least Squares Algorithms

3. Square-root Algorithms

e Standard RLS exhibits unstable roundoff error accumulation,
hence not the algorithm of choice in practice

e Alternative algorithms (‘square-root algorithms’), which have
been proved to be stable numerically, are based on orthogo-
nal matrix decompositions, namely QR decomposition
(+ QR updating, inverse QR updating, see below)
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3.1 QRD-based RLS Algorithms

QR Decomposition for LS estimation

least squares problem
minw [|d — Uw|[3
‘square-root algorithms’ based on QR decomposition (QRD):

U = Q.[R]= o . R

[} [
ke(L+1) i 0 0CITa1y  (LADX(L+D)

[
kx(L+1)
square * rectangular’ rectangular * square

QT -@Q =1, @ isorthogonal R is upper triangular
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Fverything you need to know about QR decomposition

Example : _
U Q

16 10 0.182  0.816 0.174
27 11 0.365 0.408 —0.619
38 12 0.547 0 0.716
49 —13 0.730 —0.408 —0.270

R

5.477 14.605 —5.112
0 4.082 8.981
0 0 20.668

Remark : QRD ~ Gram-Schmidt

Remark : U7 - U=RT. R
Ris Cholesky factor or square-root of UT - U

— ‘square-root’ algorithms
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(**) orthogonal transformation preserves norm

3.1 QRD-based RLS Algorithms

QRD for LS estimation
if
U= 0 [ R ]= 0 R
0CTL

- . =1
kx(L+1) s 0 TLel)  (LHDX(LAD)

then

2
min,,[[d - Uw]} = min, Q" @ -Uw)| = min,, [ ! ]_[ g }w
2

with this
-1 AT -1 AT
Rw, =z=w,,=R -z=[Q'U] -0Od

-1
This is a numerically better way of computing the LS solution, better than w = [UTU] -U'd
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3.1 QRD-based RLS Algorithms

QR-updating for RLS estimation

Assume we have computed the QRD at time k-1

[ Rik-11 2ik-1 [=Otk-17" [ U, a. ]

The corresponding LS solution is Wys[k=1]=R[k - 11" 2[k-1]

Our aim is to update the QRD into
[ ®ik1 2ix1 =061 -[ U, a, ]

and then compute w,[k]=R[k]" - z[k]
Ls
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3.1 QRD-based RLS Algorithms

QR-updating for RLS estimation

It is proved that the relevant QRD-updating problem is
R% ZI Rll\,

) oy |

IOEEGE B ou

PS: This is based on a QR-factorization as follows:

Rik-11 ]= RIK]

0

(L+2)x(L+1) (L42)x(L+1)

OIk] .

T =
(LA2)X(L42)

u;
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3.1 QRD-based RLS Algorithms

QR-updating for RLS estimation

R[k] z[k]
0---0

R[k—1] z[k—-1]
=QO[k]" -
Olk] [ u’ d, l

w [kl = RIkT" - z[k] =‘triangular backsubstitution’

= square-root (information matriz) RLS
Remark . with exponential weighting

RIk] z[k]
0---0 =

A-R[k—1] A-z[k-1
= Olk]" - PR ]
u d,
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3.1 QRD-based RLS Algorithms

QRD updating

R[k] z[k] 7 R[k—1] z[k-1]
= O[k]" -
0 e | 0

k
basic tool is Givens rotation

i J

! !

0 0 0
cosf 0 sinf

I 4 0
0 0
0 061 0 0
0 0
0

def
Gijo =

— 1

—sind 0 cosf
0 0 0 Iy

=]
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3.1 QRD-based RLS Algorithms

QRD updating

Givens rotation applied to a vector x = G j 9 - x :

; = cosf-x;+sinf -z,
j = —sinf-x;+cosb - x;
Ty=x; for l#£14,j

& =0ff tanf =L |
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3.1 QRD-based RLS Algorithms

QRD updating

=QO[k]" -
020 Olk] 7

R[k] z[k] R[k—1] z[k—-1]
u, a,

Q [k  1is constructed as a product/sequence of

Givens transformations

T rTTrT T T r T T|\T
7 T T X r xr\T
T |T

3-by-3 example
2R 8 8

*
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= Ol[k]" - u’ d,

[ RIK]  z[k] ] Rlk—11 z[k—1] ]

0---0

ulk] ulk-1  ulk-2]  u[k-3]
rotation cell

memory cell
(delay) A

RERER 2

4-by-4 example
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3.1 QRD-based RLS Algorithms

Residual extraction

R[k—1] z[k-1]
=QO[k]" -
] Olk] u’ d,

R[k] z[k]

o---0o B

From this it is proved that the ‘a posteriori residual’ is

d, —u.w,[k]l=¢- 1_[:1 cos(6,)

and the ‘a priori residual’ is

d,—uw,[k—-1]=

DSP 2016 / Chapter-7: Recursive Least Squares Algorithms

Residual extraction

ulk]  ulk-1] ulk-2] ulk-3]

rotation cell

a a’

memory cell
(delay) B

s -

d,—ua,w,Jkl=¢- n:l cos(6,)
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Example

ulk-1]  u[k-2]  ulk-3]

near-end signal
+ residual echo
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Fast Recursive Least Squares Algorithms

RLS and square-root RLS : O(7?) per time update

When the adaptive filter is an FIR filter, the computational cost
may be reduced to O(L) per time update, by exploiting the
time-shift structure of the input vectors/signals !

Here :

e QRD least squares lattice (QRD-LSL)
Other :

e Least-squares lattice (ILSL)

e ‘Fast QR’

e Fast transversal filter (FTF)
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Fast Recursive Least Squares Algorithms

Preliminaries
e vast literature available on fast least squares algorithms

o the derivation of fast algorithms is Aighly mathematical
(see page 31)

e In doing so we provide additional insight to the algorithmic
structure

DSP 2016 / Chapter-7: Recursive Least Squares Algorithms

Fast Recursive Least Squares Algorithms

9.2.1. QRD-based Least Squares Lattice algorithm.
START

INITIALISE {all variables} := 0;

FOR n FROM 1 DO

Example (he adaChe?) LET ag o(n) == x(n): ap, g{n-1) := x(n-1): ag(a-1) := y(a-1): yo(a-1) == 1;

FOR q FROM 1 TO p DO

LET ey gyt 1= (B 30 =2)) + oy, o y(a - D
IF ey g1 (1) =0 THEN LET cg g 1= i 5 g 1= 0
ELSE LET g5 g := Pep g1 (0-2)/ £p g1 (n-1)i S = @ g (0-1) F 5 5y (1)
END_IF;
LET g g 1) i=epq Btgq (0o + S, g g y():

g () =g g g g1 (0) - 5p.g Brg g (01

Hg1(n-1) 3= o g Bhg 1 (8-2) + 5y atg_y(a-1):

g1} i=cp g @g (-1 - sp Bug. (n-2):

Tq(n-1) = crq T 1(a-1:

dual e pn.n) = vq(n-1) ag g(n) COMMENT
cp(n-l ;n-)= Yq(ll-l) ﬂq(n—!) COMMENT g-th order filtered residual COMMENT

LETerq () = J(az,_q, 1= 1Y o @

IF €£,.1(n) =0 THEN LET cp g = 1iSp q = O

ELSELET oy g = Pefg-1(n-1)/ £ g-1(0) 2 5p g == @ g-1(0) / €f g1 (0}
END_IF;

See p.31 for a signal
flow graph of this

LET pp g-1(8-1) 1= € g Bit g-1(0-2) + S @ g 1 (1)
g 5= e g Abg-1(8-1) - 5p,q Bitp g-1(a-2):
COMMENT 1y(n) i=cp g Yoy (n-1);  backward prediction residual ey, 4(n.n) := yo(n) ay, o(n) COMMENT
END_DO
END_DO
FINISH
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Example QORD Lattice = O(L) complexity

Derivation omitted...

See p.31 for a signal
flow graph of this
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Fast Recursive Least Squares Algorithms

Conclusion

e Many ‘fast’ RLS algorithms available
(QRD-lattice, LSL, Fast-QR, FTF,...)

e High performance (¢fr. RLS) at low cost
(O(L)), i.e. almost as cheap as LMS)

e Derivation is very mathematical...

e ..but SFG’s may help.
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